Search results for "generic modeling environment"

showing 1 items of 1 documents

Automated uncertainty quantification analysis using a system model and data

2015

International audience; Understanding the sources of, and quantifying the magnitude of, uncertainty can improve decision-making and, thereby, make manufacturing systems more efficient. Achieving this goal requires knowledge in two separate domains: data science and manufacturing. In this paper, we focus on quantifying uncertainty, usually called uncertainty quantification (UQ). More specifically, we propose a methodology to perform UQ automatically using Bayesian networks (BN) constructed from three types of sources: a descriptive system model, physics-based mathematical models, and data. The system model is a high-level model describing the system and its parameters; we develop this model …

[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI]generic modeling environment[SPI] Engineering Sciences [physics]Computer scienceuncertainty quantificationMachine learningcomputer.software_genre01 natural sciencesData modelingSystem model[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]010104 statistics & probability03 medical and health sciences[SPI]Engineering Sciences [physics][ SPI ] Engineering Sciences [physics]Sensitivity analysis0101 mathematicsUncertainty quantification[ INFO.INFO-AI ] Computer Science [cs]/Artificial Intelligence [cs.AI]030304 developmental biologyautomation0303 health sciencesMathematical modelbusiness.industryConditional probabilityBayesian networkmeta-modelMetamodelingBayesian networkProbability distributionData miningArtificial intelligencebusinesscomputer
researchProduct